
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–15

Benjamin VanderSloot*, Sergey Frolov, Jack Wampler, Sze Chuen Tan, Irv Simpson, Michalis
Kallitsis, J. Alex Halderman, Nikita Borisov, and Eric Wustrow

Running Refraction Networking for Real

Abstract: Refraction networking is a next-generation
censorship circumvention approach that locates proxy
functionality in the network itself, at participating
ISPs or other network operators. Following years of re-
search and development and a brief pilot, we established
the world’s first production deployment of a Refrac-
tion Networking system. Our deployment uses a high-
performance implementation of the TapDance protocol
and is enabled as a transport in the popular circum-
vention app Psiphon. It uses TapDance stations at four
physical uplink locations of a mid-sized ISP, Merit Net-
work, with an aggregate bandwidth of 140 Gbps. By the
end of 2019, our system was enabled as a transport op-
tion in 559,000 installations of Psiphon, and it served
upwards of 33,000 unique users per month. This pa-
per reports on our experience building the deployment
and operating it for the first year. We describe how we
overcame engineering challenges, present detailed per-
formance metrics, and analyze how our system has re-
sponded to dynamic censor behavior. Finally, we review
lessons learned from operating this unique artifact and
discuss prospects for further scaling Refraction Network-
ing to meet the needs of censored users.

1 Introduction
National-governments are deploying increasingly sophis-
ticated systems for Internet censorship, which often
take the form of deep-packet inspection (DPI) middle-
boxes located at network choke-points [5]. At the same

*Corresponding Author: Benjamin VanderSloot: Uni-
versity of Michigan, E-mail: benvds@umich.edu
Sergey Frolov: University of Colorado Boulder, E-mail:
sergey.frolov@colorado.edu
Jack Wampler: University of Colorado Boulder, E-mail:
jack.wampler@colorado.edu
Sze Chuen Tan: University of Illinois, Urbana-Champaign,
E-mail: stan13@illinois.edu
Irv Simpson: Psiphon, E-mail: i.simpson@psiphon.ca
Michalis Kallitsis: Merit Network, E-mail:
mgkallit@merit.edu
J. Alex Halderman: University of Michigan, E-mail: jhal-
derm@eecs.umich.edu
Nikita Borisov: University of Illinois, Urbana-Champaign,
E-mail: nikita@illinois.edu
Eric Wustrow: University of Colorado Boulder, E-mail:
ewust@colorado.edu

time, popular circumvention techniques, such as domain
fronting and VPNs, are becoming harder to deploy or
more frequently blocked [15]. There is an urgent need to
field more advanced circumvention technologies in order
to level the playing field.

One proposed new circumvention approach, Refrac-
tion Networking, has the potential to fill this need, and
has been developed in the form of several proposed pro-
tocols [2, 7, 9, 13, 16, 17, 20, 27, 28] and other re-
search [3, 10, 14, 19, 25] over the past decade. It works
by deploying technology at ISPs or other network oper-
ators that observes connections in transit and provides
censorship circumvention functionality. Though promis-
ing in concept, deploying Refraction Networking in the
real world has faced a number of obstacles, including the
complexity of the technology and the need to attract
cooperation from ISPs. Other than a one-month pilot
that our project conducted in 2017 [8], no Refraction
implementation has ever served real users at ISP scale,
leaving the approach’s practical feasibility unproven.

In this paper, we describe lessons and results from
a real-world deployment of Refraction Networking that
we have operated in production for over a year and that
is enabled as a transport in more than 559,000 installa-
tions of the popular Psiphon circumvention tool for PC
and mobile users. Building on our 2017 pilot, the deploy-
ment is based on a high-performance implementation of
the TapDance protocol [8]. It operates from stations in-
stalled at Merit Network, a mid-sized ISP, that observe
an average of 70 Gbps of aggregate commodity traffic
from four network locations, each of which individually
processes a peak of 10–40 Gbps. The system has served
up to 500 Mbps of proxied traffic to circumvention users.

Building and running this deployment required solv-
ing complex technical, operational, and logistical chal-
lenges and necessitated collaboration among researchers,
network engineers, and circumvention tool developers.
This reflects a non-trivial challenge to Refraction Net-
working systems: Refraction Networking cannot func-
tion in isolation from the rest of the Internet, and so
its success depends on close interactions between the
Internet operator and Internet freedom communities.

In order to serve users well and meet requirements
set by our ISP and circumvention tool partners, we
worked within the following technical constraints:



Running Refraction Networking for Real 2

– Each TapDance station could use only 1U of physi-
cal rack space at one of the ISP’s uplink locations.

– All stations at the ISP would need to coordinate to
function as a single distributed system.

– The deployment had to operate continuously, de-
spite occasional downtime of individual stations.

– We had to strictly avoid interfering with the ISP’s
network operations or its customers systems.

– The deployment had to achieve acceptable network
performance to users in censored environments.

In this paper we describe our experience meeting these
requirements and the implications this has for further
deployment of Refraction Networking.

In addition, we analyze data from four months of
operations to evaluate the system’s performance. This
four-month period reflected typical behavior for our ISP
partners and concluded with a significant censorship
event that applied stress to infrastructure of our cir-
cumvention tool deployment partner. It shows that our
deployment’s load is affected by censorship practices,
and that it was able to handle the spike in utilization
effectively. During the censorship event, we provided In-
ternet access to more users than at any previous time,
and the system handled this load without measurable
degradation in quality of service or generating excessive
load on decoy websites, as reflected by the opt-out rate.

Our final contribution is a discussion of lessons we
learned from building and operating the deployment
that can inform future work on Refraction Networking
and other circumvention technologies. We identify two
particular areas—decoy site discovery and reducing sta-
tion complexity—where further research and develop-
ment work would be greatly beneficial.

We conclude that Refraction Networking can be de-
ployed continuously to end-users with sufficient network
operator buy-in. Although attracting ISP partnership
remains the largest hurdle to the technology’s practical
scalability, even with relatively limited scale, Refraction
can meet a critical real-world need as a fall-back trans-
port that can provide service when other, lighter-weight
transports are disrupted by censors.

The remainder of this paper is structured as follows.
In Section 2, we discuss existing techniques for and use
of Refraction Networking. We then describe our deploy-
ment’s architecture in Section 3. In Section 4, we quan-
tify the performance of our deployment using data from
the first four months of 2019. We end the discussion with
a comparison to existing decoy routing schemes. In Sec-
tion 5, we draw lessons from our deployment experience.
Finally, we conclude in Section 6.

2 Background
Refraction Networking (previously known as “decoy
routing”) is an anticensorship strategy that places cir-
cumvention technology at Internet service providers
(ISPs) and other network operators, rather than at
network endpoints. Clients access the service by mak-
ing innocuous-looking encrypted connections to existing,
uncensored websites (“decoys”) that are selected so that
the connection travels through a participating network.
The client covertly requests proxy service by including
a steganographic tag in the connection envelope that
is constructed so that it can only be detected using a
private key. At certain points within the ISP’s network,
devices (“stations”) inspect passing traffic to identify
tagged connections, use data in the tag to decrypt the
request, proxy it to the desired destination, and return
the response as if it came from the decoy site. To the
censor, this connection looks like a normal connection to
an unblocked decoy site. If sufficiently many ISPs par-
ticipate, censors will have a difficult time blocking all
available decoy sites without also blocking a prohibitive
volume of legitimate traffic [24].

Refraction Networking was first proposed in 2011.
Three independent works that year—Telex [28], Curve-
ball [16] and Cirripede [13]—all proposed the idea of
placing proxy “stations” at ISPs, with various propos-
als for how clients would signal the ISP station. For
instance, Curveball used a pre-shared secret between
the client and station, while Telex and Cirripede used
public-key steganography to embed tags in either TLS
client-hello messages or TCP initial sequence numbers.
Without the correct private key, these tags are crypto-
graphically indistinguishable from the random protocol
values they replace, so censors cannot detect them.

However, all of these first-generation schemes re-
quired inline blocking at the ISP; that is, the station
needed to be able to stop packets in individual tag-
carrying TCP connections from reaching their destina-
tion. This lets the station pretend to be the decoy server
without the real decoy responding to the client’s pack-
ets. While this makes for a conceptually simpler design,
inline blocking is expensive to do in production ISP
networks, where traffic can exceed 100s of Gbps. Inline
blocking devices also carry a higher risk of failing closed,
which would disrupt other network traffic, making ISPs
leery of deploying the Telex-era protocols.

To address this concern, researchers developed Tap-
Dance [27], which only requires a passive tap at the ISP
station, obviating the need for inline blocking. Instead,



Running Refraction Networking for Real 3

TapDance clients mute the decoy server by sending an
incomplete HTTP request inside the encrypted TLS con-
nection. While the decoy server is waiting for the re-
quest to complete, the TapDance station spoofs its IP
address and sends a response to the client. In this way,
the client and station can communicate bidirectionally,
but, to the censor, their dialog appears to be a complete
(encrypted) request and response between the client and
the decoy server. To date, TapDance is the only Refrac-
tion Networking scheme that has been deployed at ISP
scale, during a pilot our project conducted in 2017 [8].

TapDance has two important limitations. First, if
the connection stays open too long, the decoy will time-
out and close the connection. Since its TCP state will
be out-of-sync with the station and client, this would
create an obvious signal for censors, allowing them to
block the client’s future connections. While we select
decoys that have longer timeouts, this is nonetheless on
the order of 20–120 seconds. Second, the client cannot
send more than a TCP window of data, since after this
upload limit the decoy server will start responding with
stale acknowledgements. To overcome these, at the cost
of added complexity, we multiplex long-lived sessions
over multiple short-lived connections (see Section 3.2).

Beyond TapDance, other Refraction schemes have
proposed ways to make it harder to detect or fingerprint
proxy connections. Slitheen [2] is a Telex-like scheme
that perfectly mimics the timing and packet size char-
acteristics of the decoy, making it harder for censors to
block based on web fingerprinting or other classification
techniques. Rebound [7] and Waterfall [20] suggest ways
to reflect client requests off of decoys, which enables sta-
tions that only see downstream (server to client) traffic.
MultiFlow [17] provides ideas to adapt Refraction pro-
tocols to use TLS 1.3 [23], as most use prior versions
and will need to be updated once older protocols are
disabled. Finally, Conjure [9] is a recent Refraction pro-
tocol that utilizes unused IP addresses at ISP partners
to simulate proxy servers at phantom hosts. Since phan-
tom hosts are more numerous and cheaper to establish
than real proxy servers, censors may find them more
difficult to detect and block, particularly if each is only
used ephemerally by a single client.

3 Deployment Architecture
In this section, we describe the architecture of our de-
ployment, including the TapDance stations deployed at
Merit Network and our client integration with Psiphon.

3.1 Station Placement

Building on a relationship formed during our 2017 Tap-
Dance pilot [8], we deployed TapDance stations at a
mid-sized regional ISP, Merit Network, which serves sev-
eral universities and K-12 institutions in the Midwestern
United States. Merit has numerous points of presence,
routers, and peering points. Although previous work on
Refraction Networking generally assumes that any traf-
fic that transits an AS is observed by station, in prac-
tice there are constraints that keep this from being true.
As pointed out by Gosain, et al. [10], stations capable
of processing high line rates are expensive (although
our costs are at least an order of magnitude smaller
than their estimates, which were aimed at Tier 1 ISP).
There are additional costs, from finding rack space in
the points of presence, to engineering time to deploy
and manage the stations.

Due to these constraints, we used only a small
number of stations, placing them opportunistically, and
adding more as needed to maintain traffic coverage. Our
deployment initially consisted of three stations. A fourth
was added when a change in routing caused a large frac-
tion of incoming traffic to arrive along a network path
that did not have a station. Three stations use 4x10
Gbps and one uses 2x10 Gbps, for a total capacity of
140 Gbps. Typical peak utilization is about 70 Gbps,
as shown in Figure 1. The four stations observe approx-
imately 80% of the ISP’s incoming packets, but some
paths still do not pass any of them, leading client con-
nections to fail and retry with a different decoy server.

Fig. 1. Traffic at Stations. Our deployment uses four TapDance
stations with capacity to ingest a total of 140 Gbps of ISP traffic.
Utilization peaked at about 70 Gbps during our measurements.
To identify connections from TapDance clients, the stations
examined 5,000–20,000 TLS flows/second during a typical week.



Running Refraction Networking for Real 4

PF_RING

PF_RINGPF_RINGFlow tracking

Tag checking

Rust Processes

10-40 Gbps taps

TapDance-tagged
TLS flows

Detector

Flow tracking

Tag extraction
Squid

forge_socket
Session state

Proxy

Rust Processes

PF_RING

PF_RINGPF_RINGFlow tracking

Tag checking

Rust Processes

Detector

...

Responses to client

Covert connections

Fig. 2. Multistation Architecture. Light-weight detectors collo-
cated with ISP uplinks identify TapDance flows and forward them
to a central proxy. This allows a TapDance session to be multi-
plexed across connections to any set of decoys within the ISP,
regardless of which detectors the paths traverse.

3.2 Station Design and Coordination

The original TapDance design considered only single sta-
tions running in isolation [27]. While this makes sense
for a prototype, there are additional complexities when
scaling the protocol to even a mid-sized ISP.

The primary complicating factor is the need to mul-
tiplex traffic over many flows. We term a single connec-
tion to a decoy a TapDance flow, and a longer-lived con-
nection over our transport to a particular destination a
TapDance session. Multiplexing works by having clients
choose a random 16-byte session identifier, which is sent
in the first TapDance flow to the decoy site. On the sta-
tion, this first connection sets up the session state and
connects the client to the covert destination. Before the
decoy times out or the client sends data beyond the de-
coy’s upload limit, the client closes the flow and opens
a new one with the same session identifier. The station
then connects the new flow to the previous session, giv-
ing the client the appearance of an uninterrupted long-
lived session to the covert destination.

When each station operates independently, every
flow within a session has to be serviced by the same
station. During our 2017 pilot, we achieved this by hav-
ing clients use the same decoy for the duration of a
session [8]. However, this approach is unreliable when
routing conditions are unstable and subsequent flows

can take different paths, which led us to adopt a differ-
ent station architecture for our long-term deployment.
Instead of acting in isolation, stations at multiple up-
link locations coordinate, so that sessions can span any
set of decoys within the ISP. Figure 2 shows a high-level
overview of this architecture.

We split the station design into two components:
multiple detectors and a single central proxy. Detectors
located at the ISP’s uplink locations process raw traf-
fic and look for tagged TapDance flows. When a tagged
flow is identified, its packets are forwarded using Ze-
roMQ [12] to the central proxy running elsewhere in
the ISP. The central proxy maintains session state, de-
multiplexes flows, and services the TapDance session.

Detectors ingest traffic using the PF_RING high-
speed packet capture library [21], which achieves rates
from 10–40 Gbps. PF_RING allows us to split packet
processing across multiple (4–6) cores on each detector
while ensuring that all the packets in a flow are pro-
cessed by the same core, reducing the need for inter-
core communication. To identify TapDance flows, the
detectors isolate TLS connections and perform a cryp-
tographic tag check on the first TLS application data
packet using Elligator [1]. Depending on its network lo-
cation, each detector typically processes between 300
and over 16,000 new TLS flows per second.

Once a TapDance-tagged flow is observed, the de-
tector forwards it to the central proxy by sending the
flow’s TCP SYN packet, the tag-carrying application
data packet, and all subsequent packets in the flow. The
proxy thus only receives packets for flows that are re-
lated to TapDance connections. The proxy runs multiple
processes on separate cores, and, as with the detectors,
the forwarding scheme ensures that all of a session’s
flows are handled by the same process.

For each TapDance session, the central proxy main-
tains a connection to a local HTTP proxy server, which
the client uses to connect to covert destinations. (In
practice, Psiphon clients simply use it to make a long-
lived encrypted connection to an external proxy server
operated by Psiphon, so our central proxy does not see
actual user traffic.) To communicate with the TapDance
client, the central proxy uses a custom Linux kernel mod-
ule named forge_socket to initialize a socket with the
IP/TCP parameters from the client–decoy connection.
This lets the central proxy call send and recv on the
socket to produce and consume packets in the TapDance
flow, as if it were the decoy server.

One drawback of this multistation architecture is
that packets are received from the client at a different
network location (the detector) than where they are sent



Running Refraction Networking for Real 5

to the client (the central proxy). This could potentially
be used by censors to infer the presence of TapDance,
by observing TTL, timing, or network arrival point dif-
ferences. We have not seen evidence of censors exploit-
ing this (or any other technique) to block TapDance so
far. However, if it becomes necessary, the proxy could
forward packets back to the detector corresponding to
each flow and inject them into the network there.

3.3 Client Integration

To make our deployment available to users who need it,
we partnered with a popular censorship circumvention
app, Psiphon, which has millions of users globally. We
integrated TapDance support into Psiphon’s Android
and Windows software and distributed it to a cohort of
559,000 users in nine censored regions.

Psiphon clients support a suite of transport proto-
cols and dynamically select the best performing, un-
blocked transport for the user’s network environment.
Our integration with Psiphon benefits Psiphon users by
giving them access to a greater diversity of circumven-
tion techniques, and it has allowed our team to focus
on protocol implementation and operations rather than
user community building and front-end development. In
the future, our deployment could be integrated with
other user-facing circumvention tools in a similar way.

From a user’s perspective, Psiphon looks exactly the
same with or without TapDance enabled. The app does
not expose which transport it is using, and there are
no user-configurable options related to TapDance. Users
simply install the app, activate it as a system-wide VPN,
and enjoy uncensored web browsing.

Psiphon ships with several transport modules.
When a circumvention tunnel is needed, Psiphon at-
tempts to establish connections using all available trans-
ports. Whichever successfully establishes the connection
first is then used, while connections made by other trans-
ports are discarded. This selection algorithm provides
optimal user experience by prioritizing the unblocked
technique with the lowest latency.

Our TapDance deployment is available as one of
these modular transports for a subset of Psiphon users.
Since our overall capacity is limited by the size of Merit’s
network and the number of available decoys, Psiphon
has prioritized enabling TapDance in aggressively cen-
sored countries and networks. However, since Psiphon
does not track individual users, the granularity of this
distribution is coarse. The Psiphon TapDance user-base
was fixed during the measurement period analyzed in

this paper, but we have subsequently enabled it for users
in several additional countries facing censorship.

Our client library, gotapdance, is written in Go, as
is Psiphon’s app, which greatly simplified integration.
The gotapdance library provides a Dialer structure that
implements the standard net.Dialer interface. It spec-
ifies Dial and DialContext functions to establish con-
nections over TapDance to arbitrary addresses and re-
turns a TapDance connection as a standard net.Conn
object. Implementation of standard interfaces simplifies
integration by providing a familiar API, and it improves
modularity, allowing Psiphon to reuse existing code.

While this interface makes establishing TapDance
connections with gotapdance straightforward, there are
two functions that library consumers like Psiphon may
need to call first. The first is gotapdance.EnableProxy
Protocol, which modifies TapDance requests so that
the TapDance station sends the HAProxy PROXY [26]
protocol header to the destination address before start-
ing to tunnel the connection. This header includes the
IP address of the client, which Psiphon’s servers check
against an anti-abuse blacklist before discarding. All
Psiphon transport modules conform to this behavior.
Second, library users need to call gotapdance.Assets
SetDir to specify a writeable folder in which the library
can persistently store updates to its configuration, in-
cluding the list of available decoys.

To facilitate testing, Psiphon worked with us to cre-
ate a version of their application that exclusively uses
the TapDance transport. We use this version for auto-
mated testing with a continuous integration (CI) sys-
tem. On any code change to the TapDance library, the
CI system runs a suite of tests and builds Android and
command-line versions of the app for manual testing.

3.4 Operations and Monitoring

Operating a distributed deployment requires thorough
performance monitoring, so that our team can quickly
respond to component downtime, detect censorship
events or blocking attempts if they occur, and un-
derstand the effect of engineering changes on overall
throughput and reliability. We rely on a system of log-
ging and analysis technologies that aggregate informa-
tion from each individual station.

Detectors track and report the number of packets
checked, the traffic flow rates, and the current num-
ber of live sessions, among other data points. The cen-
tral proxy produces metrics that allow us to associate
flows with sessions and monitor their number, duration,



Running Refraction Networking for Real 6

throughput, and round-trip latency. Data from each sta-
tion is collected by Prometheus [22] and visualized using
Grafana [11] to provide a real-time view of the health
of the deployment.

The system has also been instrumented to prevent
overloading of decoys and to alert the project team
when an outage occurs. Long-term data is stored us-
ing an Elastic Stack [6] instance to further aggregation
and evaluation. This monitoring architecture allows us
to quantify the performance, resilience, and (when any
station fails) adaptability of the overall system.

3.5 Decoy Selection

Two important and related questions that a Refraction
Networking deployment needs to address are where to
place stations and how clients will choose which decoy
websites to contact. The former question has largely
been studied in the context of AS-level deployment to
transit ISPs [4, 10, 13, 19, 25]. The latter has not been
explored in detail, though Houmansadr et al. [13] do con-
sider how effective randomized client-side probing can
be for a given level of deployment.

Our deployment has characteristics that are signif-
icantly different from those explored in previous work.
Our partner ISP is a regional access ISP, acting as a pri-
mary point of Internet access for its customers. At the
same time, it has many peering and client connections
at numerous points of presence, so capturing all traffic
that transits it is challenging. Additionally, many of its
customers do have other network interconnections on
which traffic arrives, complicating the choice of decoys.

The nature of our deployment means that we can
enumerate the customers that are served by Merit and
their corresponding AS numbers. This allows us to sur-
vey all of the publicly reachable websites operated by
Merit’s clients by scanning port 443 across this address
range and noting the domain names on certificates re-
turned. The process yields roughly 3,000 potential decoy
sites. Not all of them are usable by TapDance, however.
There are four potential problems:
1. Does the site have a large enough initial TCP win-

dow to allow sending a sufficient amount of data?
2. Does the site support a large enough timeout to

keep a TCP connection open after a partial request
has been sent?

3. Does the site support and select a TLS cipher
suite compatible with our TapDance implementa-
tion? Currently, we support only AES GCM ciphers,
and our clients send a Chrome 62 TLS fingerprint.

Fig. 3. Decoy Discovery. Over the course of our study we at-
tempted to discover new decoys each day. TLS servers in Merit’s
network are discovered through port scanning and tested in four
stages before being published to clients. The step with the great-
est loss is when we attempt to connect to them with a real client.
Troughs in this line correspond to station outages.

If the server selects a different cipher, we will be
unable to use the connection.

4. Does traffic from to the server pass a station?

To address the first three problems, we implemented a
testing script that checks the size of the TCP window,
the duration of timeouts, and the selected TLS cipher
suite. (Our approach to the last problem is to simply
rely on station placement to attempt to capture most
traffic entering our partner ISP.) Figure 3 shows the
results over the course of our test period.

Our test script filters the available websites by first
discarding servers with a TCP window less than 15 KB
or a timeout less than 30 seconds. Next, we apply a man-
ual blocklist of subnets with servers that behave poorly
when used as decoys, due to server reliability or through-
put issues. We then remove domains that include a spe-
cific user agent in their /robots.txt file, as described in
opt-out instructions provided to decoys via a URL in the
user-agent header sent by clients. (As of February 2020,
only two domains had opted out.) Finally, we make a
test connection with our client to ensure that a usable
cipher suite is chosen and the connection is functional.

This last step removes the most decoys, due to ci-
pher suite selection and station placement. We occasion-
ally see large drops in the success rate, due to station
downtime or fault in our decoy discovery infrastructure.
To prevent temporary drops from affecting the deploy-
ment’s overall availability, we do not distribute decoy
list updates to clients if more than 30% of the previous
day’s decoys are no longer present.



Running Refraction Networking for Real 7

4 Evaluation and Measurements
In this section we evaluate our deployment of TapDance.
Following a 2017 pilot [8] and about 18 months of fur-
ther development and testing, we launched the current
deployment with a small cohort of Psiphon users in Oc-
tober 2018. We slowly increased the number of users
until entering full-scale production in early December
2018 and have been operating continuously since then.

The analysis we present here is based on data from
the first four months of 2019. We chose this period be-
cause our partner ISP predominately serves academic
institutions, and this is a representative semester, a high-
load period for the provider. It was also a period when
we did not alter our user base, and no major engineering
changes were pursued. This affords a steady-state view
of aspects of the deployment within our control.

We observe changes in TapDance use over this pe-
riod in spite of our consistency. These changes are due
primarily to changes in censor behavior. A significant
fraction of our usage occurred in a single censoring coun-
try, and such actions taken to disrupt Internet freedom
affect how circumvention protocols are used. The most
striking example is the major censorship event in mid-
April that caused TapDance usage to more than double.

We note that our evaluation period ends after traf-
fic returned to normal in late-April. At that point, we
restarted our central proxy for maintenance and inad-
vertently disabled some of the logging that we use for
our analysis, resulting in a gap in our data.

4.1 Psiphon Impact

During our observation period, TapDance was one of
several circumvention protocols offered by Psiphon, and
we served approximately 10% of traffic for Psiphon users
who had TapDance available. Daily usage varied signif-
icantly in a weekly pattern from 5,000 to 15,000 users.

When other Psiphon transports were more heavily
blocked, TapDance usage increased, peaking at above
40% of client traffic and 25,000 daily users, as shown in
Figures 4 and 5. The largest peak resulted from censor-
ship of more direct, single-hop circumvention techniques
that were previously very reliable. With these protocols
blocked, clients automatically switch to other available
transports, including TapDance, causing an apparent in-
flux of clients. We also observe the opposite effect: when
other, lower-latency circumvention protocols were tem-
porarily unblocked, users tended to select those, causing
a decrease in TapDance usage, as seen in early March.

Fig. 4. User Counts. Our user base was composed of tens of
thousands of people in censoring countries. During the evalu-
ation period, the deployment averaged about three thousand
concurrent users and ten thousand daily unique users. However,
this varied over time. We indicate dates of significant changes
in observed censor behavior in the country that had the largest
share of our users. Jan03: Censor reduced restrictions on Do-
main Fronting. Mar05: Censor reduced restrictions on direct
protocols. Mar15: Direct single-hop protocols and some domain
fronting providers were blocked. Apr15: New censorship capabili-
ties demonstrated, restricting several long-reliable techniques.

Fig. 5. TapDance Usage Rate. We show what fraction of bytes
transmitted and received by Psiphon users with TapDance avail-
able were carried via TapDance. This graph has the same features
as those in Figure 4, indicating that the size of our user base is
driven by how frequently Psiphon clients select TapDance.

4.2 Client Performance

To evaluate the quality of service that users experienced
and the overall utility of our deployment, we analyze
the network performance that clients achieved and the
overall throughput of the system, ensure there was no
degradation of service under load, and confirm that no
clients monopolized system resources.



Running Refraction Networking for Real 8

Fig. 6. Resource Consumption by Client /24. We show the CDF
of consumption of sessions, data transmission, and decoy uti-
lization by client /24 subnet. We see no major difference in
any of these lines, indicating a uniform allocation of resources
per session over our user base. Half of all resources are used by
8,000 client subnets and 1% are used by 10,000.

Fig. 7. Goodput. Over our study period, useful data transmis-
sion peaked at around 500 Mbps, during the final week. User
traffic per session corresponded to approximately 100 Kbps per
user throughout the study period, and did not decrease under
increased user load.

To protect user privacy, we do not track individual
clients. Instead, we log the subnet (/24) from which the
client appeared to connect. Even at this coarser gran-
ularity, we do not observe monopolization of any sys-
tem resources by small sets of clients, as shown in Fig-
ure 6. We analyzed the number of bytes up, bytes down,
and session duration, and find that these all correlate
strongly, showing a similar usage of bytes and duration
per session across all client subnets (bytes up and down,
r = 0.88; bytes up and duration, r = 0.82; bytes down
and duration, r = 0.74). This suggests that most users
receive similar performance.

Fig. 8. System Latency. Latency was steady throughout our
measurement period, but the time to connect spiked in early
February when a brief outage caused persistent clients to wait a
long time for the system to return before they could reconnect.
We also note that There was an increase in dial RTT towards the
end of our evaluation period, which is detailed in Figure 20.

Fig. 9. Connection Establishment Time. We plot the CDFs of
connection establishment times to identify which step is the
largest contributor. Stations failing to pick up for the first decoy
a client tries and causing a new decoy to be used is the source of
the greatest delay in both the worst and typical cases.

Over this study period, the average user data
throughput did not drive or depend upon system utiliza-
tion; rather, total system throughput depended upon
the number of clients using the system, as shown in Fig-
ure 7. This indicates there was likely available capacity
during much of our evaluation period that went unused
due to Psiphon’s protocol selection strategy.

Clients saw an average round-trip-time (RTT) un-
der one second for the entirety of our evaluation period.
We note this may be due to survivorship bias in our mea-
surement strategy, as clients that took longer may use
another transport, closing connections before we receive



Running Refraction Networking for Real 9

Fig. 10. Session Size CDFs. Session size distributions were sim-
ilar over our full measurement period and during the censorship
event in the final week. Over 90% of sessions transmitted and re-
ceived more than 10 kB. We did not see a large effect on session
size during the increased utilization of the censorship event.

their metrics. The average time to transfer the first byte
of a connection was considerably longer, often over five
seconds, as shown in Figure 8. This is due to the large
number of round trips required before useful data is de-
livered. This effect is multiplied in cases when the first
attempt to communicate with a decoy fails. We observe
that, for many decoys, our stations are not reliably on
the connection path for all clients. This forces the client
to try multiple decoys before a connection succeeds, as
shown later in Figure 14. This effect contributes the ma-
jority of our time to first byte, as supported by Figure 9.

In spite of the long time to first byte, our clients
observe reasonable session lengths in bytes and time,
shown in Figure 10 and Figure 11 respectively. Client
connections lasted approximately 50 seconds and trans-
fer 20kB in a median session. Moreover, during the cen-
sorship event, under increased load, we did not observe
degradation in these performance distributions.

Since Psiphon operates as a transport for the cen-
sored user, very often for connections to websites over
HTTPS, it has limited visibility into the range of time
taken to download pages or even individual files. How-
ever, we have reason to conclude that TapDance at least
does not degrade user experience for Psiphon clients.
First, our deployment is only used as a transport when it
has the lowest latency among available techniques. This
means that our long connection establishment time and
high latency are only experienced by clients when they
are the fastest functional option. Second, Psiphon has
a feedback mechanism that is monitored for complaints
of poor performance, and they did not see significant
increases where our technique was deployed.

Fig. 11. Session Duration CDFs. Like session size, session dura-
tion followed similar distributions during both the full measure-
ment period and the censorship event. The median connection
lasted 50 seconds. We also did not see a large effect on session
duration during the increased utilization of the censorship event.

4.3 Decoy Impact

One concern that we and our ISP partner share is avoid-
ing burdening sites used as decoys. It is important not
to overload them with excessive traffic or large numbers
of concurrent connections. In Figure 12, we show that
our impact on decoys was generally small. In Figure 13,
we see that half of all decoys typically had two or fewer
concurrent connections during our observations.

In spite of the top 10% of decoys seeing the most
use, the peak usage is restricted to below an average
of 50 concurrent connections over the busiest day. As
shown in Table 1, over the entire measurement period,
the busiest decoy saw an average of 13.24 concurrent
connections, corresponding to 12.32 MB of uncensored

Table 1. Top Decoys. We show the ten most frequently used
decoys during our 115-day measurement period. These top decoys
are well distributed through the ISP’s address space, except for
ranks 5, 9, and 10 (*), which are in the same /24.

Mean Concurrent Transfer Rate
Rank Connections Connections (MB/Day)

1 13.24 163,991 12.32
2 12.76 167,277 10.74
3 12.00 167,144 10.70
4 10.75 167,507 9.14
5* 10.70 128,691 13.29
6 10.68 151,699 8.04
7 10.48 127,980 12.89
8 10.42 161,146 9.15
9* 10.41 127,971 13.40
10* 10.34 127,948 12.67



Running Refraction Networking for Real 10

Fig. 12. Decoy Distribution. The CDFs of sessions, bytes, and
session-time across decoys are not as similar as those in Fig-
ure 6, indicating a difference in utilization across these resources.
Session-time and bytes were particularly focused on the most
popular decoys, as indicated by steepness near the left of the plot.

Fig. 13. Decoy Quantiles. Traffic was unevenly distributed across
decoys. While the median decoy typically had two or fewer clients
connected simultaneously, the 90th percentile saw around ten.

traffic per day. We note that decoys do not see the bulk
of proxied traffic, since most bytes are sent from the
stations to clients, though decoys do receive (and ignore)
data and acknowledgements from clients.

We find evidence that our mechanism for communi-
cating and performing decoy opt-out worked. Two do-
mains included us in their robots.txt files and were
automatically excluded from future decoy lists.

4.4 Station Performance

During the evaluation period, we did not observe any of
the stations saturating its computation, disk, or mem-
ory resources. Clients reported the number of failed de-

Fig. 14. Client Decoy Failures. Clients select a random decoy
from a provided list; after multiple attempts, they retry with a
different decoy. There was about one failure for each successful
connection. Which decoys failed was inconsistent across clients.
Predicting which clients can use which decoys is challenging.

Fig. 15. Duplicate Detection. We observed consistently low du-
plication of client requests to decoys, with the exception of one
peak in late March corresponding to a routing change.

coy connections they attempted before each successful
connection, as shown in Figure 14; this metric does not
increase during period with heavy usage, supporting a
conclusion that stations were able to keep up with client
load. We only observe a dip when a routing configura-
tion was temporarily used that more reliably routed de-
coys past our stations. This change and reversion was
outside of our direction.

Another routing change briefly caused an elevated
number of requests to pass two stations, resulting in
a spike in client requests observed twice (Figure 15).
This exercised our multistation architecture’s ability to
allow connections to span multiple detectors. The base-
line rate was about 1.5%, indicating that this capability
is also useful during normal operations.



Running Refraction Networking for Real 11

Nonetheless, the average number of failed decoys
for each successful connection was above one, indicating
that, for every successful connection, clients typically
tried and failed at least once. While clients automat-
ically retry until unsuccessful, this metric shows that
improvements to decoy selection or station placement
would likely positively impact time to first byte.

In order to quantify the impact of the volume of
traffic we serve on the quality of service, we looked for
correlations between the traffic volume and quality met-
rics. In Figure 16, we show a scatter plot where each dot
represents a day of operation. The horizontal axis indi-
cates the number of connections we handled that day,
normalized by the mean value over our measurement pe-
riod. The vertical axis is a similarly normalized scale of
reliability, as quantified by client connection success rate
and the amount of data transmitted per connection. The
amount of data transmitted per connection and the total
connections served have a Pearson’s R of −0.11. Upon
linear regression, we find that the correlation effect size
is insignificant (p = 0.05). The connection success rate
and total connections served correlate with a Pearson’s
R of 0.41. Interestingly, this demonstrated a small posi-
tive correlation (linear regression slope = 0.068 ± 0.030).

Both of these correlations support the claim that we
operated within the bounds of what our system can reli-
ably handle; neither shows statistically significant nega-
tive correlation. Qualitatively, we also observe that our
plots do not display a “tipping point” after which we
would see significant performance degradation.

Fig. 16. Reliability Under Varied Load. We did not find evidence
of negative correlation between the system’s traffic volume and
quality metrics. In this plot, each point represents a day of op-
eration, with connection volume indicated along the horizontal
axis and the normalized client connection success rate indicated
along the vertical axis. The lack of correlation supports that the
deployment operated within its capacity limits.

Fig. 17. TapDance Usage Rate Under Censorship. This plot
shows the same metric as Figure 5 during and after the censor-
ship event at the end of the study period.

4.5 Censorship Event

During the final two weeks of our measurement period,
we observed a significant increase in usage. This was the
result of the deployment of new censorship techniques
in the country where most of our users were located.
While many Psiphon transports were disrupted by the
censor, our TapDance deployment remained accessible,
so we received increased load as Psiphon clients auto-
matically switched to using TapDance. This accounted
for a 4× increase in the fraction of TapDance-enabled
Psiphon clients’ traffic that used our system, as shown
in Figure 17.

The spike in traffic was not limited to only a few
client subnets. Figure 18 plots the CDF of client usage
across subnets during the censorship event and has a
similar shape to the distribution across the entire mea-
surement period. Although some client subnets main-
tained longer connections, we do not see a change in the
byte per session distribution in any subnets. This indi-
cates that the change in traffic was due to an increased
frequency of use, not because a small set of subnets were
using significantly more bandwidth. In Figure 19, we
see that during the censorship event, most subnets ex-
hibited increased use of our system. However, some saw
a drastic decline, particularly those unaffected by the
change in censorship. Even the small increase in con-
nection establishment time while our deployment was
under censorship load, shown in Figure 20, might have
caused otherwise unaffected Psiphon clients to shift to
other transports. This further suggests that efforts to
decrease establishment time (such as better decoy selec-
tion or more aggressive timeouts for failed decoys) may
increase the share of clients that select TapDance.



Running Refraction Networking for Real 12

Fig. 18. Client Subnet Distribution Under Censorship. We replot
Figure 6 during the censorship event, highlighting an increase in
concentration of some subnets, particularly in byte usage, though
half of all bytes were spread over 14% of subnets.

Fig. 19. Client Distribution Change Under Censorship. During
the censorship event, most clients showed an increase in sessions,
bytes, and connection time. However, some clients showed de-
creased usage, especially those in regions unaffected by the event.

Fig. 20. System Latency Under Censorship. We highlight latency
metrics during the censorship event. Dial RTT increases slightly,
but it does not noticeably impact total time to connect.

5 Discussion
In this section we discuss some of the lessons we learned
about the unique challenges of deploying a Refraction
Networking scheme in practice, and what this means for
the future prospects of the technology.

5.1 Where Refraction Provides Value

Our TapDance deployment serves only a relatively small
share of Psiphon’s traffic. It was enabled for a small frac-
tion of Psiphon users and served about ten percent of
those users’ traffic over our measurement period. Given
the costs of developing and operating such a complex
distributed system and navigating the institutional rela-
tionships necessary to deploy it, this may not seem like a
worthwhile investment on its face. However, Refraction
Networking played a critical role during the censorship
event, when it kept thousands of users connected that
would otherwise have been successfully censored. Main-
taining connectivity during periods of heightened cen-
sorship is vital, as it allows updates to circumvention
software and news relevant to the censorship event to
reach populations who need them. Our experience indi-
cates that advanced circumvention techniques such as
TapDance can effectively provide such a lifeline.

5.2 Deployment Costs

Other than research and development, the major cost
of our ISP deployment was hardware, which cost about
6,000 USD per site (i.e., four detector stations, plus the
central proxy), for a total of 30,000 USD. This was used
for purchasing hardware such as commodity 1U servers,
network cards, optics, etc. Merit donated the bandwidth
and hosting costs; it estimates that the co-location cost
(i.e. rack space and power) of the current deployment
would be about 13,000 USD per year, and the band-
width cost for a 2 Gbps upstream connection would
be 24,000 USD per year. In addition, Merit assigned
an engineer with an effort of about 40% FTE to help
with system maintenance, management, and operation.
Many of these costs are specific to Refraction schemes,
which have the unusual requirements of co-location at
network operators and elevated engineering time for sys-
tem maintenance. While engineering costs will go down
with stability and scale, the cost of operating core sys-
tem infrastructure at ISPs incurs costs beyond those of
other circumvention approaches.



Running Refraction Networking for Real 13

5.3 Addressing Partner Concerns

Merit and other network operators we have engaged
with have expressed several very reasonable concerns
concerning deploying Refraction Networking. We review
some of the most prominent ones here and discuss how
we mitigated the issues.

Will the deployment impact normal production traffic?
TapDance is specifically designed to avoid interference
to an ISP’s normal operation. Since TapDance stations
only observe a mirror of traffic, their outages will not af-
fect regular commodity traffic flowing through the ISP.
Although an ISP’s network might become saturated if
too many TapDance clients started using it, we pro-
visioned our deployment to avoid this: Merit observed
70 Gbps of commodity traffic (out of a 140 Gbps capac-
ity), while our user traffic added only about 500 Mbps,
much less than a problematic level. We also have the
ability to modulate usage at a coarse granularity if nec-
essary to address capacity concerns, though we have not
had to use this capability in practice. Proxied connec-
tions originate from address space managed by Psiphon,
which also manages responding to abuse.

Will the deployment affect user privacy?
Stations observe network traffic to identify connections
from Refraction users. To protect privacy and reduce
risks, stations only need to receive traffic that is already
end-to-end encrypted via TLS. This does not remove
all privacy risks in the case of a compromised station—
IP addresses and domains from SNI headers and certifi-
cates would be visible—but exposure is greatly reduced
compared to a full packet tap. To reduce privacy risks
for TapDance users, clients connect to Psiphon proxies
through an encrypted tunnel over the deployment, so
stations cannot see the content users request or receive.

How will decoy websites be affected?
Our clients used 1500–2000 decoy websites at times dur-
ing the measurement period. These sites do indeed see a
small increase in load, but, since client traffic is spread
across all available decoys, the burden on individual
sites should be negligible. We monitored the number
of connections to each decoy to ensure it was under a
conservative threshold (see Figure 13). We also offered
a simple way for sites to opt-out of being used as decoys,
but only two sites did so during our evaluation period.

Will censors attack the ISP in retaliation?
Our ISP partner was also concerned that censors might
try to attack it or its customers in retaliation for host-

ing TapDance. Such a response would be extraordinary,
though not completely unprecedented [18]. We have
not observed any evidence of retaliatory attacks tak-
ing place, but Merit mitigated the risk by proactively
contracting with a DDoS protection service provider.

5.4 Lessons and Future Directions

Some of the lessons we learned in the course of deploying
TapDance may be useful for those looking to improve
upon Refraction Networking techniques or manage fur-
ther deployments. In particular:
1. TapDance’s complexity, and the need to work

around TCP window and server timeout limitations,
created ongoing engineering and operational chal-
lenges, as well as bottlenecks to some aspects of
the deployment’s measured performance. Simplify-
ing the design would enhance the deployability of
future Refraction approaches.

2. Decoy attrition did not pose a significant challenge
for our scale of deployment, at least over the 18
months of operation to date. Few servers opted out,
and none reported operational problems.

3. Router-level route prediction for client-to-decoy
connections is important to the performance of Re-
fraction techniques, but this problem is complex
when deploying in networks like Merits, in which
it is prohibitive to place stations on every incom-
ing path to many decoys. Our current approach
is overly simplistic—about half of client connec-
tion attempts fail to pass a station due to routing
behavior—and it would be even less effective for
deployments farther from the edge of the network.
Further work is needed.

4. ISP partnerships remain a bottleneck to the growth
of Refraction Networking. Despite TapDance’s ease
of deployment relative to earlier Refraction schemes,
partners remain concerned about effects on decoy
sites and other operational risks. Partnership with
Tier 1 or Tier 2 ISPs may also raise more concern
about impacts on decoy websites, as the lack of a di-
rect customer relationship between the ISP and site
operators may make ISPs less comfortable with an
opt-out model. Significant investments in partner-
building will continue to be necessary in order to
grow our deployment.

5. Although larger Refraction Networking deploy-
ments would have more capacity and be more
prohibitive to block, even relatively small deploy-



Running Refraction Networking for Real 14

ments such as ours can be surprisingly valuable as
a fallback technique to keep users connected dur-
ing periods of heightened censorship. This suggests
that a deployment composed of a constellation of
mid-sized network operators like Merit could be a
powerful anticensorship tool, and it would require
far less investment than the Tier-1 scale installa-
tions envisioned in early Refraction research.

Some of these lessons are incorporated into the design
of Conjure [9], a new Refraction protocol in which the
importance of decoys backed by real websites is reduced.
Rather, beyond initial registration, decoys are produced
from address space with no web server present. This ap-
proach holds promise as a practical way to reduce com-
plexity and performance bottlenecks and obviate con-
cerns about impacts on decoy sites. However, we note
that Conjure does not resolve all of the remaining chal-
lenges to Refraction Network’s deployability, and there
is a continued need for research.

6 Conclusion
This paper presents results from the first deployment of
a Refraction Networking scheme to enter continuous pro-
duction with real-world users. Our experience running
TapDance in production for 18 months demonstrates
that Refraction Networking can play a vital role in pro-
viding connectivity, even when censors increase their ef-
forts to block other circumvention techniques. We hope
our work will inform the design and operation of fur-
ther advanced anticensorship systems, which are more
important than ever for people living under censorship
in countries worldwide.

Acknowledgements

We are grateful to the many people who helped bring Re-
fraction Networking out of the laboratory and into pro-
duction, including Sol Bermann, Rosalind Deibert, Fred
Douglas, Dan Ellard, Alexis Gantous, Ian Goldberg,
Aaron Helsinger, Michael Hull, Rod Hynes, Ciprian
Ianculovici, Adam Kruger, Victoria Manfredi, Allison
McDonald, David Robinson, Joseph Sawasky, Steve
Schultze, Will Scott, Colleen Swanson, and Scott Wol-
chok, and to our outstanding partner organizations,
Merit Network and Psiphon. This material is based in
part upon work supported by the National Science Foun-
dation under grants CNS-1518888 and OAC-1925476.

References
[1] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange.

Elligator: Elliptic-curve points indistinguishable from uniform
random strings. In ACM Conference on Computer and
Communications Security (CCS), 2013.

[2] C. Bocovich and I. Goldberg. Slitheen: Perfectly imitated de-
coy routing through traffic replacement. In ACM Conference
on Computer and Communications Security (CCS), 2016.

[3] C. Bocovich and I. Goldberg. Secure asymmetry and deploy-
ability for decoy routing systems. Proceedings on Privacy
Enhancing Technologies, 2018(3), 2018.

[4] J. Cesareo, J. Karlin, M. Schapira, and J. Rexford. Optimiz-
ing the placement of implicit proxies, June 2012. Technical
Report, Available: http://www.cs.princeton.edu/~jrex/
papers/decoy-routing.pdf.

[5] L. Dixon, T. Ristenpart, and T. Shrimpton. Network traffic
obfuscation and automated Internet censorship. IEEE Security
& Privacy, 14(6):43–53, 2016.

[6] Elastic, Co. Elastic stack and product documentation.
Available: https://www.elastic.co/guide/index.html.

[7] D. Ellard, A. Jackson, C. Jones, V. Manfredi, W. T. Strayer,
B. Thapa, and M. V. Welie. Rebound: Decoy routing on
asymmetric routes via error messages. In IEEE Conference on
Local Computer Networks (LCN), 2015.

[8] S. Frolov, F. Douglas, W. Scott, A. McDonald, B. Van-
derSloot, R. Hynes, A. Kruger, M. Kallitsis, D. Robinson,
N. Borisov, J. A. Halderman, and E. Wustrow. An ISP-scale
deployment of TapDance. In USENIX Workshop on Free and
Open Communications on the Internet (FOCI), 2017.

[9] S. Frolov, J. Wampler, S. C. Tan, J. A. Halderman,
N. Borisov, and E. Wustrow. Conjure: Summoning prox-
ies from unused address space. In ACM Conference on
Computer and Communications Security (CCS), 2019.

[10] D. Gosain, A. Agarwal, S. Chakravarty, and H. B. Acharya.
The devil’s in the details: Placing decoy routers in the Inter-
net. In Annual Computer Security Applications Conference
(ACSAC), 2017.

[11] Grafana Labs. Grafana documentation. Available: https://
grafana.com/docs/.

[12] P. Hintjens. ZeroMQ: Messaging for Many Applications.
O’Reilly, 2013.

[13] A. Houmansadr, G. T. K. Nguyen, M. Caesar, and
N. Borisov. Cirripede: Circumvention infrastructure using
router redirection with plausible deniability. In ACM Con-
ference on Computer and Communications Security (CCS),
2011.

[14] A. Houmansadr, E. L. Wong, and V. Shmatikov. No direction
home: The true cost of routing around decoys. In Internet So-
ciety Network and Distributed System Security Symposium
(NDSS), 2014.

[15] M. Kan. Russia to block 9 VPNs for rejecting censorship
demand. PCMag, June 7, 2019. Available: https://www.
pcmag.com/news/russia-to-block-9-vpns-for-rejecting-
censorship-demand.

[16] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer,
D. P. Mankins, and W. T. Strayer. Decoy routing: Toward
unblockable Internet communication. In USENIX Workshop
on Free and Open Communications on the Internet (FOCI),
2011.

http://www.cs.princeton.edu/~jrex/papers/decoy-routing.pdf
http://www.cs.princeton.edu/~jrex/papers/decoy-routing.pdf
https://www.elastic.co/guide/index.html
https://grafana.com/docs/
https://grafana.com/docs/
https://www.pcmag.com/news/russia-to-block-9-vpns-for-rejecting-censorship-demand
https://www.pcmag.com/news/russia-to-block-9-vpns-for-rejecting-censorship-demand
https://www.pcmag.com/news/russia-to-block-9-vpns-for-rejecting-censorship-demand


Running Refraction Networking for Real 15

[17] V. Manfredi and P. Songkuntham. Multiflow: Cross-
connection decoy routing using TLS 1.3 session resumption.
In USENIX Workshop on Free and Open Communications
on the Internet (FOCI), 2018.

[18] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield,
S. McKune, A. Rey, J. Railton, R. Deibert, and V. Paxson.
An analysis of China’s Great Cannon. In USENIX Workshop
on Free and Open Communications on the Internet (FOCI),
2015.

[19] M. Nasr and A. Houmansadr. Game of decoys: Optimal
decoy routing through game theory. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[20] M. Nasr, H. Zolfaghari, and A. Houmansadr. The waterfall of
liberty: Decoy routing circumvention that resists routing at-
tacks. In ACM Conference on Computer and Communications
Security (CCS), 2017.

[21] Ntop. PF_RING. Available: http://www.ntop.org/products/
pf_ring.

[22] Prometheus: Monitoring system and time series database.
Available: https://prometheus.io.

[23] E. Rescorla. The transport layer security (TLS) protocol
version 1.3. RFC 8446, 2018.

[24] D. Robinson, H. Yu, and A. An. Collateral freedom: A
snapshot of Chinese Internet users circumventing censorship,
2013. Available at https://www.upturn.org/static/files/
CollateralFreedom.pdf.

[25] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper.
Routing around decoys. In ACM Conference on Computer
and Communications Security (CCS), 2012.

[26] W. Tarreau. The PROXY protocol versions 1 & 2, 2017.
Available: https://www.haproxy.org/download/1.8/doc/
proxy-protocol.txt.

[27] E. Wustrow, C. M. Swanson, and J. A. Halderman. Tap-
Dance: End-to-middle anticensorship without flow blocking.
In USENIX Security Symposium, 2014.

[28] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman.
Telex: Anticensorship in the network infrastructure. In
USENIX Security Symposium, 2011.

http://www.ntop.org/products/pf_ring
http://www.ntop.org/products/pf_ring
https://prometheus.io
https://www.upturn.org/static/files/CollateralFreedom.pdf
https://www.upturn.org/static/files/CollateralFreedom.pdf
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

	Running Refraction Networking for Real
	1 Introduction
	2 Background
	3 Deployment Architecture
	3.1 Station Placement
	3.2 Station Design and Coordination
	3.3 Client Integration
	3.4 Operations and Monitoring
	3.5 Decoy Selection

	4 Evaluation and Measurements
	4.1 Psiphon Impact
	4.2 Client Performance
	4.3 Decoy Impact
	4.4 Station Performance
	4.5 Censorship Event

	5 Discussion
	5.1 Where Refraction Provides Value
	5.2 Deployment Costs
	5.3 Addressing Partner Concerns
	5.4 Lessons and Future Directions

	6 Conclusion


